Gerak melingkar dapat dipandang sebagai gerak berubah beraturan. Bedakan dengan gerak lurus berubah beraturan (GLBB). Konsep kecepatan yang berubah kadang hanya dipahami dalam perubahan besarnya, dalam gerak melingkar beraturan (GMB) besarnya kecepatan adalah tetap, akan tetapi arahnya yang berubah dengan beraturan, bandingkan dengan GLBB yang arahnya tetap akan tetapi besarnya kecepatan yang berubah beraturan.
Adalah gerak suatu benda dengan bentuk lintasan melingkar dan besar percepatan sudut/anguler (α) konstan.
Jika perecepatan anguler benda searah dengan perubahan kecepatan anguler maka perputaran benda semakin cepat, dan dikatakan GMBB dipercepat. Sebaliknya jika percepatan anguler berlawanan arah dengan perubahan kecepatan anguler benda akan semakin lambat, dan dikatakan GMBB diperlambat.
Jika perecepatan anguler benda searah dengan perubahan kecepatan anguler maka perputaran benda semakin cepat, dan dikatakan GMBB dipercepat. Sebaliknya jika percepatan anguler berlawanan arah dengan perubahan kecepatan anguler benda akan semakin lambat, dan dikatakan GMBB diperlambat.
Besaran gerak melingkar
Besaran-besaran yang mendeskripsikan suatu gerak melingkar adalah , dan atau berturur-turut berarti sudut, kecepatan sudut dan percepatan sudut. Besaran-besaran ini bila dianalogikan dengan gerak linier setara dengan posisi, kecepatan dan percepatan atau dilambangkan berturut-turut dengan , dan .Gerak lurus | Gerak melingkar | ||
---|---|---|---|
Besaran | Satuan(SI) | Besaran | Satuan (SI) |
poisisi | m | sudut | rad |
kecepatan | m/s | kecepatan sudut | rad/s |
percepatan | m/s2 | percepatan sudut | rad/s2 |
- | - | perioda | s |
- | - | radius | m |
Turunan dan integral
Seperti halnya kembarannya dalam gerak linier, besaran-besaran gerak melingkar pun memiliki hubungan satu sama lain melalui proses integrasi dan diferensiasi.Hubungan antar besaran sudut dan tangensial
Antara besaran gerak linier dan melingkar terdapat suatu hubungan melalui khusus untuk komponen tangensial, yaituJenis gerak melingkar
Gerak melingkar dapat dibedakan menjadi dua jenis, atas keseragaman kecepatan sudutnya , yaitu:- gerak melingkar beraturan, dan
- gerak melingkar berubah beraturan.
Gerak melingkar beraturan
Gerak Melingkar Beraturan (GMB) adalah gerak melingkar dengan besar kecepatan sudut tetap. Besar Kecepatan sudut diperolah dengan membagi kecepatan tangensial dengan jari-jari lintasanGerak melingkar berubah beraturan
Gerak Melingkar Berubah Beraturan (GMBB) adalah gerak melingkar dengan percepatan sudut tetap. Dalam gerak ini terdapat percepatan tangensial (yang dalam hal ini sama dengan percepatan linier) yang menyinggung lintasan lingkaran (berhimpit dengan arah kecepatan tangensial ).Persamaan parametrik
Gerak melingkar dapat pula dinyatakan dalam persamaan parametrik dengan terlebih dahulu mendefinisikan:- titik awal gerakan dilakukan
- kecepatan sudut putaran (yang berarti suatu GMB)
- pusat lingkaran
Hal pertama yang harus dilakukan adalah menghitung jari-jari lintasan yang diperoleh melalui:
Hubungan antar besaran linier dan angular
Dengan menggunakan persamaan parametrik, telah dibatasi bahwa besaran linier yang digunakan hanyalah besaran tangensial atau hanya komponen vektor pada arah angular, yang berarti tidak ada komponen vektor dalam arah radial. Dengan batasan ini hubungan antara besaran linier (tangensial) dan angular dapat dengan mudah diturunkan.Kecepatan tangensial dan kecepatan sudut
Kecepatan linier total dapat diperoleh melaluiPercepatan tangensial dan kecepatan sudut
Dengan cara yang sama dengan sebelumnya, percepatan linier total dapat diperoleh melaluiKecepatan sudut tidak tetap
Persamaan parametric dapat pula digunakan apabila gerak melingkar merupakan GMBB, atau bukan lagi GMB dengan terdapatnya kecepatan sudut yang berubah beraturan (atau adanya percepatan sudut). Langkah-langkah yang sama dapat dilakukan, akan tetapi perlu diingat bahwaPersamaan parametrik di atas, dapat dituliskan dalam bentuk yang lebih umum, yaitu:
Kecepatan sudut
Dengan menggunakan aturan rantai dalam melakukan diferensiasi posisi dari persamaan parametrik terhadap waktu diperolehPercepatan total
Diferensiasi lebih lanjut terhadap waktu pada kecepatan linier memberikanGerak berubah beraturan
Kecepatan | GLBB | GMB |
---|---|---|
Besar | berubah | tetap |
Arah | tetap |
1. Percepatan Anguler (α)
Sebuah benda bergerak melingkar dengan laju anguler berubah beraturan memiliki perubahan kecepatan angulernya adalah :
Δω = ω2 – ω1
Dan perubahan waktu kecepatan anguler adalah Δt, maka di dapatkan :
Dan perubahan waktu kecepatan anguler adalah Δt, maka di dapatkan :
∆ω = perubahan kecepatan sudut (rad/s)
∆t = selang waktu (s)
α = percepatan sudut/anguler (rads-2)
∆t = selang waktu (s)
α = percepatan sudut/anguler (rads-2)
Sama halnya dengan Gerak Lurus Berubah Beraturan (GLBB), pada GMBB berlaku juga :
- Mencari posisi sudut / besar sudut (θ) yang ditempuh:
θ= ω0 t ± α.t2
x = R. θ
Dapat diperoleh juga :
ωt2 = ω02 ± 2 α.θ
θ= ω0 t ± α.t2
x = R. θ
Dapat diperoleh juga :
ωt2 = ω02 ± 2 α.θ
dimana :
ωt = kecepatan sudut/anguler keadaan akhir(rad/s)
ω0 = kecepatan sudut/anguler keadaan awal (rad/s)
θ = besar sudut yang ditempuh (radian, putaran)
1 rpm = 1 putaran permenit
1 putaran = 360° = 2p rad.
x = perpindahan linier (m)
t = waktu yang diperlukan (s)
R = jari-jari lintasan (m)
ω0 = kecepatan sudut/anguler keadaan awal (rad/s)
θ = besar sudut yang ditempuh (radian, putaran)
1 rpm = 1 putaran permenit
1 putaran = 360° = 2p rad.
x = perpindahan linier (m)
t = waktu yang diperlukan (s)
R = jari-jari lintasan (m)
2. Percepatan Tangensial (at)
Pada gerak melingkar berubah beraturan selain percepatan sentripetal (as) juga mempunyai percepatan tangensial (at).
Percepatan Tangensial (at) diperoleh :
Percepatan Tangensial (at) diperoleh :
maka : at = . R dengan arah menyinggung lintasan.
Partikel P memiliki komponen Percepatan :
a = at + as , dimana at tegak lurus as ( as at )
Besar Percepatan Linier Total partikel titik P :
at = percepatan tangensial (ms-2)
as = percepatan sentripetal (ms-2)
a = percepatan total (ms-2)
Jika as = dan maka didapat :
Percepatan total (a) :
dimana
V = kelajuan linier (m/s)
R = jari-jari lintasan (m)
= percepatan sudut (rad s-2)
R = jari-jari lintasan (m)
= percepatan sudut (rad s-2)
Semua benda bergerak melingkar selalu memiliki percepatan sentripetal, tetapi belum tentu memiliki percepatan tangensial.
Percepatan tangensial hanya dimiliki bila benda bergerak melingkar dan mengalami perubahan kelajuan linier.
Benda yang bergerak melingkar dengan kelajuan linier tetap hanya memiliki percepatan sentripetal, tetapi tidak mempunyai percepatan tangensial (at = 0 ).
Percepatan tangensial hanya dimiliki bila benda bergerak melingkar dan mengalami perubahan kelajuan linier.
Benda yang bergerak melingkar dengan kelajuan linier tetap hanya memiliki percepatan sentripetal, tetapi tidak mempunyai percepatan tangensial (at = 0 ).
Contoh soal Konsep Gerak Melingkar Berubah Beraturan:
Sebuah roda mobil sedang berputar dengan kecepatan sudut 8,6 rad/s. Suatu gesekan kecil pada poros putaran menyebabkan suatu perlambatan sudut tetap sehingga akhirnya berhenti dalam waktu 192 s. Tentukan :
Sebuah roda mobil sedang berputar dengan kecepatan sudut 8,6 rad/s. Suatu gesekan kecil pada poros putaran menyebabkan suatu perlambatan sudut tetap sehingga akhirnya berhenti dalam waktu 192 s. Tentukan :
- Percepatan sudut
- Jarak yang telah ditempuh roda dari mulai bergerak sampai berhenti (jari-jari roda 20 cm)
Pembahasan :
Diketahui : ω0= 8,6 rad/s
ωt = 0 rad/s
t = 192 s
R = 10cm= 0,1 m
Diketahui : ω0= 8,6 rad/s
ωt = 0 rad/s
t = 192 s
R = 10cm= 0,1 m
Ditanya : a.
b. x
b. x
Jawab :
a. = - 0,045 rads-2
b.
= (8,6).(192) + (-0,045).(192)2= 826 rad
x = R.θ
= (0,1m),(826)
= 82,6 m
Ayunan Konis
Ayunan Konis (Ayunan Kerucut) adalah putaran sebuah benda yang diikat pada seutas tali yang panjangnya L ujung atas tali diikat pada satu titik tetap dan benda diputar mengitari permukaan membentuk kerucut.
Ayunan Konis (Ayunan Kerucut) adalah putaran sebuah benda yang diikat pada seutas tali yang panjangnya L ujung atas tali diikat pada satu titik tetap dan benda diputar mengitari permukaan membentuk kerucut.
Gaya
yang bekerja adalah Tx sebagai gaya sentripetal yang menyebabkan
benda bergerak melingkar beraturan pada bidang horizontal.
Tx = Fs
Tx = Fs
Pada Sumbu Y :
Benda tidak bergerak,maka sesuai hukum I Newton.
Fy = 0
Tcosθ – mg = 0
T cos θ = mg ....... (2)
Dari pers (1) dan (2) diperoleh : Benda tidak bergerak,maka sesuai hukum I Newton.
Fy = 0
Tcosθ – mg = 0
T cos θ = mg ....... (2)
dimana
V = kelajuan ayunan(m/s)
g = percepatan gravitasi (ms-2)
R = jari-jari (m)
θ = besar sudut putar(rad)
g = percepatan gravitasi (ms-2)
R = jari-jari (m)
θ = besar sudut putar(rad)
Contoh soal Ayunan Konis/kerucut:
Seutas tali dengan panjang 1 m, ujung atasnya dipegang dan ujung bawah dikaitkan ke benda bermassa 100 g.Kemudian tali diputar sehingga benda bergerak melingkar horisontal dengan jari-jari lingkaran 0,5 m. Hitunglah :
a. besar tegangan tali
b. kelajuan linier benda
Pembahasan :
Diketahui : L =1 m
R = 0,5 m
m = 100g = 0,1 kg
Ditanya :
a. T
b. V
Seutas tali dengan panjang 1 m, ujung atasnya dipegang dan ujung bawah dikaitkan ke benda bermassa 100 g.Kemudian tali diputar sehingga benda bergerak melingkar horisontal dengan jari-jari lingkaran 0,5 m. Hitunglah :
a. besar tegangan tali
b. kelajuan linier benda
Pembahasan :
Diketahui : L =1 m
R = 0,5 m
m = 100g = 0,1 kg
Ditanya :
a. T
b. V
Jawab :
(a) (b) (c)Berdasarkan gambar (b) : tan θ = = 0,58 , cos θ =
T cos θ = (0,1).(10)
T = N
b.
= 1,70 m/s
= 1,70 m/s
Tidak ada komentar:
Posting Komentar